

ATI Technologies, Inc.

http://www.ati.com/developer

Copyright © ATI Technologies, Inc. All rights reserved.

Render To Vertex Buffer Programming
Emil Persson

ATI Technologies, Inc.
epersson@ati.com

Introduction
Render to vertex buffer is a new feature available in ATI drivers starting with Catalyst 5.9. It is available
on all DirectX 9 class ATI hardware from the Radeon 9500 and up, with some extra abilities for the
X1x00 series. Render to Vertex Buffer, or R2VB for short, can in some ways be seen as a precursor to
DirectX 10. It allows some of the effects of DirectX 10 to be efficiently implemented on DirectX 9
hardware. It also gives an interesting insight in the way of thinking you’ll have to get used to when some
of the DirectX 10 features become mainstream.

How it works

Basic idea

Vertex shader

Pixel shader Render to
texture

Render to
vertex buffer

Render target

The basic idea is that you render to a texture as usual. In a second pass you use this texture as a vertex
buffer. What is the benefit of this ability compared to regular render-to-texture? What does this feature
bring us? Well, it creates a data loop
on the GPU. We can first render an
image, and then reuse this rendered
data in a later pass. Essentially we’re
looping it back to the beginning of the
pixel pipe. Data computed on the GPU
can then be reused later on. By doing
this we can create interesting effects
such as reflections, heat haze, shadows
etc. We can also do various
simulations on the GPU without
burdening the CPU, like for instance
water. However, we’re still stuck with
only pixel processing having this
ability. In the water simulation case,
we can dynamically simulate a normal
map to put over the surface, but we
cannot use this method to alter the
actual geometry. R2VB solves the problem by looping the data back even further, all the way to the
vertex shader. This simple diagram demonstrates the difference.

The ability to feed computed data back into the vertex shader allows us to modify actual geometry. It
also allows for interesting, and perhaps slightly counterintuitive, ways of solving problems. For instance

mailto:epersson@ati.com

ATI Technologies, Inc.

http://www.ati.com/developer

Copyright © ATI Technologies, Inc. All rights reserved.

with the Radeon X1900 hardware we have 48 ALU units in the pixel pipes, while there are only 8 ALU
units for vertex processing. Ignoring the slight differences in ALU setup, that’s roughly 6x the amount
of ALU power in the pixel pipes. By doing vertex shading in the pixel pipes, we can thus achieve
significantly better performance. Where to logically place some of the workload becomes a bit fuzzier.
In addition to the potential performance boost from R2VB, one can enjoy all the functionality of the
pixel shader in the vertex shader – very efficient dynamic flow control, a plethora of texture formats,
including compressed textures and extremely fast texture access, which allows using textures as very
large constant buffers. In a sense this can also be viewed a precursor to unified shading.

Implementation
Let’s take a look how rendered data be used in the vertex pipe. While it’s called “render to vertex
buffer” it’s really more like “render to texture then reinterpret the texture as a vertex buffer”, but that’s
of course way too long for daily language.
What do a texture and a vertex buffer have in common? Both of them are memory arrays addressable by
the GPU. The difference is in how the GPU interprets the data in these arrays. For instance the layout of
texture elements (texels) is described by texture dimensions, texel format and so on. The layout of data
in a vertex buffer is determined by the vertex declaration. To illustrate a decoupling of the data stored in
a buffer and its interpretation, one can at any time change the vertex declaration used with a certain area
in the vertex buffer, thus reinterpreting the data, still as vertices, but with a completely different format.
Of course, that typically doesn’t make much sense unless you also change the data in the buffer, but the
point is that data are just data, and the GPU could easily be programmed to read vertices from a memory
area that belongs to a render target. This is exactly what R2VB does.

For this to make sense, we of course need to ensure that the data we’re storing in a render target are laid
out in such a manner that interpreting them as vertices would line up well with the usage of a vertex
buffer. Normally the application doesn’t know what format a texture is in, and the driver and hardware
are free to use any swizzle they prefer. Since textures aren’t typically accessed in a linear fashion,
textures are normally swizzled to optimize for spatially close accesses in texture space. Also, render
targets are two-dimensional. Vertex buffers on the other hand are one-dimensional and are accessed
sequentially. So to make this work we’ll need the render target to be in a linear format such that it can be
interpreted as a long vertex array, line by line, like in the illustration below. By creating a render texture
with D3DUSAGE_DMAP usage flag the application instructs the driver to disable texture swizzling so
that the data can be linearly fetched by the vertex fetcher.
The following diagram shows how a 4x3 texture can be interpreted as a 12 element one-dimensional
vertex array. This is analogous to how a 2D array in C/C++ would be accessed if you read it sequentially
in memory as a 1D array.

ATI Technologies, Inc.

http://www.ati.com/developer

Copyright © ATI Technologies, Inc. All rights reserved.

2 3 0 1 6 7 4 5 10 11 8 9

Note that it’s not necessary that we map pixels to vertices 1:1, even though this is by far the most
common case. You could for instance render to an RGBA32F texture, where each of the four
components map to the same single float attribute of four different vertices.
On SM 2.0 and SM 2.x ATI hardware such as Radeon 9500 to Radeon X850 only one vertex stream can
be mapped to a render target, while on Radeon X1x00 series up to 5 R2VB streams can be used.

API usage
The first thing you need to do in order to use R2VB is to check that it’s available. This is done by
checking for the “R2VB” FourCC format.

bool supportsR2VB = d3d->CheckDeviceFormat(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,
 D3DFMT_X8R8G8B8, 0, D3DRTYPE_SURFACE,
 (D3DFORMAT) MAKEFOURCC('R','2','V','B')) == D3D_OK;

To create a render target intended to be used with R2VB we pass the D3DUSAGE_DMAP flag when
creating the texture. This tells the driver that we need a linear memory layout as discussed.

dev->CreateTexture(width, height, 1, D3DUSAGE_RENDERTARGET | D3DUSAGE_DMAP,
 D3DFMT_A32B32G32R32F, D3DPOOL_DEFAULT, &d3drt, NULL);

The created render target can now be used as usual. It will behave in every way like any other render
target would do; only now the data is stored in an intuitive linear fashion, which will only matter once
we use it as a vertex buffer. Note that it’s not necessary to use it exclusively as a vertex buffer. It’s still a
regular render target that can be used for texturing as well.

ATI Technologies, Inc.

http://www.ati.com/developer

Copyright © ATI Technologies, Inc. All rights reserved.

Since the texture is accessed as a linear memory area there’s not that much to say about the vertex
declaration. It behaves in every way as with any vertex buffer. But naturally in the vast majority of the
cases one will probably want to match the texture format with the equivalent vertex declaration types. If
the texture is D3DFMT_A32B32G32R32F you naturally would want to match this with a
D3DDECLTYPE_FLOAT4 for the stream in question in your vertex declaration. For a direct mapping,
these formats should line up perfectly.
The following table matches render target texture formats to all available vertex declaration types.
However trickier mapping (e.g. D3DFMT_A32B32G32R32F treated as 2 D3DDECLTYPE_FLOAT2
vectors belonging to different vertices) can also be applied. The driver performs absolutely no validation
and it’s even possible to map floats to integers and vice versa.

Texture format Vertex declaration type
D3DFMT_R32F D3DDECLTYPE_FLOAT1
D3DFMT_G32R32F D3DDECLTYPE_FLOAT2
D3DFMT_A32B32G32R32F D3DDECLTYPE_FLOAT4
D3DFMT_G16R16F D3DDECLTYPE_FLOAT16_2
D3DFMT_A16B16G16R16F D3DDECLTYPE_FLOAT16_4
D3DFMT_G16R16 D3DDECLTYPE_SHORT2

D3DDECLTYPE_SHORT2N
D3DDECLTYPE_USHORT2N

D3DFMT_A16B16G16R16 D3DDECLTYPE_SHORT4
D3DDECLTYPE_SHORT4N
D3DDECLTYPE_USHORT4N

D3DFMT_A8R8G8B8 D3DDECLTYPE_D3DCOLOR
D3DDECLTYPE_UBYTE4 (BGRA)
D3DDECLTYPE_UBYTE4N (BGRA)

Once the render target has been updated with the desired vertex data we need to tell the driver about our
intentions. The D3DRS_POINTSIZE state is used for this purpose. This state normally holds fairly
small values as the maximum point size on current ATI hardware is 256. A part of the invalid range of
point size values is used to communicate R2VB commands to the driver. In order to make all the
commands more readable and avoid the need to understand intricacies of the special command token
formatting, the following few utility functions can be used:

#define R2VB_GLB_ENA_CMD 0x0
#define R2VB_VS2SM_CMD 0x1

// R2VB Command Token
#define R2VB_TOK_CMD_SHFT 24
#define R2VB_TOK_CMD_MSK 0x0F000000
#define R2VB_TOK_CMD_MAG 0x70FF0000
#define R2VB_TOK_CMD_MAT 0xFFFF0000
#define R2VB_TOK_PLD_MSK 0x0000FFFF

ATI Technologies, Inc.

http://www.ati.com/developer

Copyright © ATI Technologies, Inc. All rights reserved.

#define R2VB_GLB_ENA_MSK 0x1
#define R2VB_VS2SM_STRM_MSK 0xF
#define R2VB_VS2SM_SMP_SHFT 0x4
#define R2VB_VS2SM_SMP_MSK 0x7

// R2VB enums
#define R2VB_VSMP_OVR_DMAP 0 // override stream with dmap sampler
#define R2VB_VSMP_OVR_VTX0 1 // override stream with vertex texture 0 sampler
#define R2VB_VSMP_OVR_VTX1 2 // override stream with vertex texture 1 sampler
#define R2VB_VSMP_OVR_VTX2 3 // override stream with vertex texture 2 sampler
#define R2VB_VSMP_OVR_VTX3 4 // override stream with vertex texture 3 sampler
#define R2VB_VSMP_OVR_DIS 5 // disable stream override
#define R2VB_VSMP_OVR_NUM 6 //
#define R2VB_VSMP_NUM 5 // 5 available texture samplers

__inline DWORD r2vbToken_Set(DWORD cmd, DWORD payload)
{ DWORD cmd_token = (cmd << R2VB_TOK_CMD_SHFT) & R2VB_TOK_CMD_MSK;
 DWORD pld_data = payload & R2VB_TOK_PLD_MSK;
 return (R2VB_TOK_CMD_MAG | cmd_token | pld_data);
}

__inline DWORD r2vbGlbEnable_Set(BOOL ena)
{ DWORD payload = ena & R2VB_GLB_ENA_MSK;
 DWORD dw = r2vbToken_Set(R2VB_GLB_ENA_CMD, payload);
 return dw;
}

__inline DWORD r2vbVStrm2SmpMap_Set(DWORD str, DWORD smp)
{ DWORD sampler = (smp & R2VB_VS2SM_SMP_MSK) << R2VB_VS2SM_SMP_SHFT;
 DWORD stream = (str & R2VB_VS2SM_STRM_MSK);
 DWORD payload = sampler | stream;
 DWORD dw = r2vbToken_Set(R2VB_VS2SM_CMD, payload);
 return dw;
}

These functions are declared in the atir2vb.h file included in the ATI SDK (located in
Samples\Framework\Direct3D). The r2vbGlbEnable() function is used for globally enabling and
disabling R2VB while r2vbVStrm2SmpMap_Set() is used for mapping samplers to vertex streams.

For any R2VB vertex stream mapping to take effect we must first globally enable the R2VB extension.
This is done as follows:

dev->SetRenderState(D3DRS_POINTSIZE, r2vbGlbEnable_Set(TRUE));

Naturally, disabling it is done with the call:

ATI Technologies, Inc.

http://www.ati.com/developer

Copyright © ATI Technologies, Inc. All rights reserved.

dev->SetRenderState(D3DRS_POINTSIZE, r2vbGlbEnable_Set(FALSE));

After R2VB has been enabled, the next step is to bind a render target to a vertex stream. Unfortunately
DirectX 9 API doesn’t allow directly mapping texture surface in video memory to the vertex streams.
The only way to specify a texture is to use the SetTexture API call. This means we need to use
SetTexture with D3DDMAPSAMPLER for passing the texture down to the driver. The good thing about
D3DDMAPSAMPLER is that it can be used on all SM2.0 hardware. On the Radeon X1x00 series, which
support VS3.0, we also have four D3DVERTEXTEXTURESAMPLER[n] samplers available, allowing a
total of five different vertex streams to be fetched from textures simultaneously. This is how you bind a
render target to a DMAP sampler:

dev->SetTexture(D3DDMAPSAMPLER, renderTarget);

At this point mapping a texture to D3DDMAPSAMPLER sampler (or to
D3DVERTEXTEXTURESAMPLER[n]sampler on Radeon X1x00) will not cause the texture to be used
as a displacement map or vertex texture since displacement maps and vertex textures aren’t supported by
ATI hardware. We also need to tell the driver that the streams should be fetched from these samplers
instead of from the vertex buffer. This can be done as shown in the following code snippet:

// Tell the driver that stream 1 is to be fetched from the DMAP texture
dev->SetRenderState(D3DRS_POINTSIZE, r2vbVStrm2SmpMap_Set(1, R2VB_VSMP_OVR_DMAP));

The first parameter of r2vbVStrm2SmpMap_Set helper function specifies which vertex stream should be
overloaded with R2VB data, and the second parameters tell the driver where that data will be coming
from. Here R2VB_VSMP_OVR_DMAP signals that the data will come from texture bound to
D3DDMAPSAMPLER and similarly we could use for instance R2VB_VSMP_OVR_VTX2 to fetch
vertices from D3DVERTEXTEXTURESAMPLER2. Once we’re done with using R2VB data we should
restore the vertex stream to fetch from the vertex buffer as usual.

// Stream 1 restored to regular vertex buffer mode
dev->SetRenderState(D3DRS_POINTSIZE, r2vbVStrm2SmpMap_Set(1, R2VB_VSMP_OVR_DIS));

Note that even though we fetch the vertices from the texture, and not the vertex buffer, we still need to
call SetStreamSource. We’re not interested in the actual vertex buffer, but we need the stride and
offset parameters. Instead of using the actual vertex buffer with real vertex data we could use a dummy
vertex buffer. This can be any vertex buffer and the content doesn’t matter, so any existing buffer could
be used. Many developers will prefer to use the DirectX debug runtime at least some of the time during

ATI Technologies, Inc.

http://www.ati.com/developer

Copyright © ATI Technologies, Inc. All rights reserved.

development, so it should be mentioned that the debug runtime has stricter validation which in this case
means that you have to ensure that the dummy vertex buffer is large enough to contain all the vertices
you specify in the draw call. In some cases this is not a problem. For instance if you use R2VB to update
a water surface, and you have a static buffer containing two floats, the X and Z, and the water surface is
a dynamically updated render target in R32F format containing the Y component. In that case, you can
just use the static buffer as the dummy as it’s guaranteed to always be large enough (in fact, even twice
as big). In other cases where no available vertex buffer is larger than the largest stream fetched from a
render target, the easiest solution may be to just create a separate dummy vertex buffer. In order not to
waste too much memory it’s best to detect whether you’re running with debug or release runtime. Since
most end users will have the release runtime it’s best to create a minimal vertex buffer for this case (1
byte will suffice), while you could create a large one to cover the biggest stream used in the lifetime of
the application if the debug runtime is detected.

The final code to set up rendering using the render target as a vertex buffer could look something like
this:

// Enable render to vertex buffer extension
dev->SetRenderState(D3DRS_POINTSIZE, r2vbGlbEnable_Set(TRUE));

// Setup stream 0 – regular VB data
dev->SetStreamSource(0, staticVertexBuffer, 0, 2 * sizeof(float))

// Setup stream 1 – R2VB data
dev->SetTexture(D3DDMAPSAMPLER, renderTarget);
dev->SetRenderState(D3DRS_POINTSIZE, r2vbVStrm2SmpMap_Set(1, R2VB_VSMP_OVR_DMAP));
dev->SetStreamSource(1, dummy, 0, 4 * sizeof(float))

// Draw ...
dev->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 0, nVertices, 0, nPrimitives);

// Restore stream 1 to regular vertex buffer mode
dev->SetRenderState(D3DRS_POINTSIZE, r2vbVStrm2SmpMap_Set(1, R2VB_VSMP_OVR_DIS));
dev->SetTexture(D3DDMAPSAMPLER, NULL);

// Disable render to vertex buffer extension
dev->SetRenderState(D3DRS_POINTSIZE, r2vbGlbEnable_Set(FALSE));

Finally, a detail worth noting is that the driver will not allow the same sampler to be mapped to multiple
vertex streams. When you update the mapping of a certain stream, the driver will disable any previous
binding that used that sampler. This means that the stream that sampler was previously mapped to will
become mapped to a regular vertex buffer set with SetStreamSource. This behavior will not be a
concern for the vast majority of the applications.

dev->SetRenderState(D3DRS_POINTSIZE, r2vbVStrm2SmpMap_Set(0, R2VB_VSMP_OVR_DMAP));
dev->SetRenderState(D3DRS_POINTSIZE, r2vbVStrm2SmpMap_Set(1, R2VB_VSMP_OVR_VTX0));

ATI Technologies, Inc.

http://www.ati.com/developer

Copyright © ATI Technologies, Inc. All rights reserved.

dev->SetRenderState(D3DRS_POINTSIZE, r2vbVStrm2SmpMap_Set(2, R2VB_VSMP_OVR_VTX1));
// Will implicitly disable the previous VTX0->stream1 binding
dev->SetRenderState(D3DRS_POINTSIZE, r2vbVStrm2SmpMap_Set(3, R2VB_VSMP_OVR_VTX0));

After this code has run, stream0 will read from the DMAP sampler, stream1 will read from the regular
vertex buffer, stream2 from vertex texture 1 and stream3 from vertex texture 0.

Usage cases
So now that we have this functionality, what can we do with it? The idea to render to a vertex buffer
diverts a fair amount from traditional techniques and it may not be immediately obvious what this is
useful for. Similarly, regular render-to-texture felt somewhat alien when it was first introduced. Initial
uses tended to be for rearview mirrors and other stuff that were intuitive enough, but soon more abstract
techniques like shadow mapping were developed. Today render-to-texture is an indispensable tool in a
wide range of rendering techniques. Similarly, techniques like displacement mapping on rectangular
terrain patches may be an intuitive use for R2VB, but the possibilities go much further than that.
Learning R2VB today will give you an early insight into the way of thinking that will become
mainstream concepts in the DirectX 10 timeframe.

In the March release of the ATI SDK there is a large set of R2VB samples that illustrate a range of
effects that can be implemented with R2VB. As a good “getting started” sample, take a look at the
R2VB-Terrain sample. It does a simple terrain morphing. Other effects that have been implemented in
the SDK include:

• Characters leaving footprints in the snow.
• Inverse kinematics.
• Cloth simulation.
• Collision detection.
• Water simulation.
• Particle system.
• Sorting.

All these are done entirely on the GPU with a minimal amount of CPU aid, where in many cases
traditional solutions would have required the CPU to solve the bigger part of the problem. Other samples
show how to use R2VB to optimize performance of certain tasks such as:

• Character animation.
• Shadow volume extrusion.

Or even reintroduce hardware acceleration of something that no longer has dedicated hardware:

• N-patches.

ATI Technologies, Inc.

http://www.ati.com/developer

Copyright © ATI Technologies, Inc. All rights reserved.

Looking into any of these samples and their documentation will explain the implementation details of
each of these particular techniques. Other possibilities where render to vertex buffer could be
advantageous include:

• Infinite terrain based on noise functions.
• Massive terrain (like the entire surface of Mars) compressed in ATI1N format.
• Various forms of tessellation.
• Destructible geometry.
• Physics.

The sky is the limit.

Performance considerations
R2VB doesn’t require many new aspects of performance tuning over the general advice presented in The
Radeon X1x00 programming guide. But there are a few things to remember that are particularly relevant
in the context of R2VB.

Exploit parallelism. If you’re processing a single channel attribute, like for example a vertical
displacement on terrain, you could process four vertices in parallel. Instead of processing one element in
the shader and outputting it to an R32F texture, you could process four vertices in parallel and output to
an RGBA32F texture.

Don’t use larger than necessary render target and vertex buffer data types. In many cases 16-bit floats
and integers work fine without precision problems and give a healthy performance improvement. In
some cases you could even use RGBA8. In many cases where you’re maintaining some kind of state in
the render targets, for example position and direction for particles in a particle system, you’ll be reading
current state into the shader as you’re updating it, writing the results back to another render target, and
then reading that as a vertex buffer. If you’re using wide data types the bandwidth required for this could
become a bottleneck. Also keep in mind that wide data types not only require extra bandwidth, but also
need additional cycles when you sample them in the pixel shader, even if all data is in the cache. An
RGBA32F texture requires 4 cycles per sample, whereas RGBA16F only requires 2 cycles. With the
Radeon X1900 and Radeon X1600 providing a 3:1 ALU:TEX ratio in pixel shaders it becomes
increasingly more important to keep the amount of cycles spent on texture sampling down.

Since many of the uses of R2VB are related to animating stuff on the GPU, like particles systems, cloth
simulation, physics etc. it’s common that you need to keep track of and process a larger amount of data
per pass than usual. You may for instance want to keep track of position, direction, normals, etc, and if
all need to be updated in the same processing pass this tends to amount to more than four components.
For this reason you’ll probably find that MRTs (multiple render targets) come into play much more
frequently when you work with R2VB than otherwise. Unfortunately, one of the limitations of MRTs is
that all render targets need to be the same bit-depth. This can be particularly annoying if you need 5
components. In order to accompany the 5th component you’d have to use another render target of the
same size, which could mean three unused components. In some cases you can mix and match same size

ATI Technologies, Inc.

http://www.ati.com/developer

Copyright © ATI Technologies, Inc. All rights reserved.

formats to make it less painful, for instance as RGBA16F and RG32F which would give you six
components, where two have the luxury of additional precision. Another solution that can be considered
in cases like this is to pack two or more components together in one. If for instance the 5th component
can be merged with another component and the two later unpacked in the vertex shader in the final pass,
this can in many cases be faster than reading and writing twice as much data in the pixel shader.

Another reason why you’d sometimes want to pack components together is that you only have the
DMAP sampler available on pre-X1x00 hardware. This limits the amount of R2VB data you can read as
a vertex buffer to four components. Fortunately, not all data in flight will necessarily be used for actual
rendering, like for instance with a particle system you keep track of position, direction and particle life
time, but the direction vector is relevant only for animation and not for rendering, leaving us with only
four components of the seven actually needed to be read as a vertex buffer in the end. However, we’re
not always that lucky. A common case is if you need both a position and a normal. That’s 6 components.
In that case the normal is a good candidate for packing into the .w component to squeeze it into a four
component vector since its components are limited to values between -1 and 1. The code below packs a
normal with roughly 8 bit precision per component when using a 32bit float*, at a cost of four
instructions.

Out.Pos_Normal.w = dot(floor(normal * 127.5 + 127.5), float3(1 / 256.0, 1, 256.0));

Decoding this in the vertex shader can be done with the following code, which comes at a cost of three
instructions.

float3 normal = frac(Pos_Normal.w * float3(1, 1 / 256.0, 1 / 65536.0)) * 2 - 1;

Conclusion
Render to vertex buffer adds a lot of interesting opportunities. By providing a data loop-back all the way
to be beginning of the pipeline it allows us to manage and process data and states fully contained on the
GPU in ways that were previously not possible. With R2VB many more tasks can now be done entirely
by the GPU without burdening the CPU. This gives us a great chance to get started with DirectX 10
rendering algorithms on a DirectX 9 platform.

* The mantissa is 23bits, meaning that the x component may only receive the equivalent of 7 bits depending on the value of
the z component. More elaborate math can be used to extract more precision at the cost of more instructions, for instance by
using 7 bits plus sign for z.

	Introduction
	How it works
	Basic idea
	Implementation
	API usage

	Usage cases
	Performance considerations
	Conclusion

